Seeing through a turbulent atmosphere has been one of the biggest challenges for ground-to-ground long-range incoherent imaging systems. The literature is very rich that can be dated back to Andrey Kolmogorov in the late 40’s, followed by a series of major developments by David Fried, Robert Noll, among others, during the 60’s and 70’s. However, even though we have a much better understanding of the atmosphere today, there remains a gap from the optics theory to image processing algorithms. In particular, training a deep neural network requires an accurate physical forward model that can synthesize training data at a large scale. Traditional wave propagation simulators are not an option here because they are computationally too expensive --- a 256x256 gray scale image would take several minutes to simulate.
In this talk, I will discuss the lessons I learned over the past few years and present some of my own work. I will start by giving a brief introduction of the classical split-step propagation model that has been the backbone of many numerical wave simulators. Then I will present two new simulators my students and I invented at Purdue:
As an image processing / computer vision person, I will explain the turbulence physics using the language we are familiar with. I will discuss the potential benefits of the new simulators for future deep learning algorithms on this topic.
Stanley Chan, PhD
Elmore Associate Professor
Electrical and Computer Engineering
Purdue University
No recent activity